Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Uk Lee* and Hea-Chung Joo

Department of Chemistry, Pukyong National University, 599-1 Daeyeon-3dong Nam-ku, Pusan 608-737, South Korea

Correspondence e-mail: uklee@mail.pknu.ac.kr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{V}-\mathrm{O})=0.002 \AA$
R factor $=0.034$
$w R$ factor $=0.094$
Data-to-parameter ratio $=15.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Potassium-sodium double salt of decavanadate, $\mathrm{K}_{4} \mathrm{Na}_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{\mathbf{2 8}}\right] \cdot \mathbf{1 0 H} \mathrm{H}_{\mathbf{2}} \mathrm{O}$

The double salt tetrapotassium disodium decavanadate decahydrate, $\mathrm{K}_{4} \mathrm{Na}_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$, crystallizes in the triclinic system in space group $P \overline{1}$. The centrosymmetric $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ polyanion forms a three-dimensional network via $\mathrm{O}_{\text {polyanion }} \ldots$ $\mathrm{K}^{+} \ldots \mathrm{O}_{\text {polyanion }}$ coordination with K^{+}ions and $\mathrm{O}_{\text {polyanion }} \cdots \mathrm{H}-$ $\mathrm{O}_{\text {water }} \cdot \cdot \mathrm{Na}^{+}$hydrogen bonds. The $\mathrm{V} \cdots \mathrm{V}$ distances are in the range 3.0601 (9)-3.271 (1) \AA, and the four types of $\mathrm{V}-\mathrm{O}$ bond lengths are in the ranges $1.597(2)-1.621(2)(\mathrm{O} t)$, $1.920(2)-2.020(2) \quad(\mathrm{O} c), \quad 1.682(2)-2.072(2) \quad(\mathrm{Ob}) \quad$ and $2.088(2)-2.368(2) \AA(O h)$.

Comment

Simple decavanadate salts of alkali metals or ammonium have been reported, viz. $\mathrm{Na}_{6}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}$ (Durif et al., 1980), $\mathrm{Na}_{6}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}$ (Xu et al., 1996), $\mathrm{Na}_{2}\left[\mathrm{H}_{4} \mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 14 \mathrm{H}_{2} \mathrm{O}$

Figure 1

A view of the title structure with 50% probability displacement ellipsoids, showing the full coordination of the cations. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x, 1-y, 1-z$; (iii) $x-1,1+y, z$; (iv) $1-x, 1-y, 2-z$; (v) $-x$, $1-y, 2-z$.]

Received 15 July 2003 Accepted 25 July 2003 Online 31 July 2003

Figure 2
The coordination of K^{+}and Na^{+}ions in (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $-x, 1-y, 2-z$; (ii) $x-1,1+y, z$; (iii) $1-x, 1-y, 2-z$; (iv) $-x, 1-y, 1-z$; (v) $x, 1-y, 2-z$.]
(Zhang et al., 1985), $\mathrm{Na}_{3}\left[\mathrm{H}_{3} \mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 15 \mathrm{H}_{2} \mathrm{O}$ (Duraisamy et al., 2000), $\mathrm{K}_{6}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (Xu et al., 1997), $\mathrm{Cs}_{4}\left[\mathrm{H}_{2} \mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot-$ $4 \mathrm{H}_{2} \mathrm{O}$ (Rigotti et al., 1987) and $\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Eglmeier et al., 1993), and double salts of alkali metal with ammonium, viz. $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Na}_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (Fratzky et al., 2000). However, no alkali metal double salt has yet been reported.

Although the ideal symmetry of the decavanadate anion is $D_{2 h}(\mathrm{mmm})$, all the decavanadates that have been reported show only C_{1} (1) or $C_{i}(\overline{1})$ symmetry. The preparation of decavanadates that have higher symmetry in the solid state is a crystallographically interesting and significant challenge. The title compound, tetrapotassium disodium decavanadate decahydrate, $\mathrm{K}_{4} \mathrm{Na}_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$, (I), was obtained as a result of an attempt to prepare a high-symmetry decavanadate anion. We plan, in the future, to report the two double salt decavanadates, $\mathrm{K}_{4} \mathrm{Na}\left[\mathrm{HV}_{10} \mathrm{O}_{28}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{Na}_{4}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right]$-$18 \mathrm{H}_{2} \mathrm{O}$ which have space groups $P 2 / n$ and $C 2 / m$, respectively.

Fig. 1 shows the structure of (I) and the labeling scheme of the decavanadate anion. The centrosymmetric polyanion consists of five independent $\left[\mathrm{VO}_{6}\right]$ octahedra, sharing edges, and has $C_{i}(\overline{1})$ symmetry. The labeling of the O atoms in the polyanion is the same as the labeling in the previously reported structure (Lee et al., 2003). The V...V distances are in the range 3.0601 (9)-3.271 (1) \AA; the $\mathrm{V}-\mathrm{O}$ distances given in Table 1 are normal. The bond lengths and angles of the $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ anion show a similar trend to those found in the literature. The framework of $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ has been studied in detail previously (Evans, 1966; Nowogrocki et al., 1997).

Figure 3
The unit-cell packing and interactions of O atoms in the polyanion of (I). Probable $\mathrm{O}_{\text {poyanion }} \cdots \mathrm{H}-\mathrm{O}_{w}$ hydrogen-bonds are shown in red broken lines. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x, 1-y, 1-z$; (iii) $1-x, 1-y, 2-z ;$ (iv) $1+x, y, z ;(\mathrm{v})-x, 2-y, 1-z(\mathrm{vi}) 1+x, y-1, z$; (vii) $x, y, z-1$.]

Fig. 2 shows the discrete cluster of $\mathrm{Na}, \mathrm{K} 1$ and K 2 coordinated by O atoms. The decavanadate anion is surrounded by these clusters. The K1 and K2 ions are coordinated by eight and seven O atoms, $\left[\mathrm{K} 1(\mathrm{Ob})_{3}(\mathrm{O} t)(\mathrm{O} c)(\mathrm{O} w)_{3}\right]^{+}$and $\left[\mathrm{K} 2(\mathrm{Ob})_{3}(\mathrm{O} t)_{2}(\mathrm{O} w)_{2}\right]^{+}$, with a distance range of $2.788(3)-$ 3.313 (4) \AA and the Na^{+}ion is coordinated by six waters of crystallization, with a distance range of 2.325 (3) -2.444 (3) \AA.

Fig. 3 shows the unit cell packing with $\mathrm{K}^{+} \ldots \mathrm{O}_{\text {polyanion }}$, the coordination features of Na^{+}ions, and $\mathrm{O}_{\text {poyanion }} \cdots \mathrm{H}-\mathrm{O} w$ hydrogen bonding in (I). All of the surface O atoms of the decavanadate anion are coordinated to the K^{+}ion, except the atoms $\mathrm{O} c 2, \mathrm{O} b 10$ and $\mathrm{O} t 11$. The Na^{+}ion is coordinated only by water of crystallization.

All the water molecules of crystallization form hydrogen bonds with O atoms of the decavanadate and there are no $\mathrm{O} w-\mathrm{H} \cdots \mathrm{O} w$ hydrogen-bond interactions. All of the surface O atoms in the decavanadate anion form hydrogen bonds with the waters of crystallization except atoms $\mathrm{O} c 3, \mathrm{O} b 7$ and $\mathrm{O} t 11$. Atom Ot 11 does not form any interactions. Hydrogen-bond distances, less than $3.1 \AA$, formed by water molecules of crystallization are listed in Table 2.

Experimental

Compound (I) was obtained by mixing hot aqueous solutions of $\mathrm{KVO}_{3}(2.0 \mathrm{~g} / 30 \mathrm{ml})$ and $\mathrm{NaCl}(1.0 \mathrm{~g} / 20 \mathrm{ml})$, and adjusting the pH to about 5.0. The pH was adjusted by adding $3 \mathrm{MHO}_{3}$ dropwise while stirring vigorously. After a day, pale brown crystals of (I) were isolated at room temperature.

Crystal data

$\mathrm{Na}_{2} \mathrm{~K}_{4}\left(\mathrm{~V}_{10} \mathrm{O}_{28}\right) \cdot 10 \mathrm{H}_{2} \mathrm{O}$	$Z=1$
$M_{r}=1339.94$	$D_{x}=2.654 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1} \overline{1}$	Mo $K \alpha$ radiation
$a=8.620(1) \AA$	Cell parameters from 28
$b=10.387(1) \AA$	reflections
$c=11.017(2) \AA$	$\theta=9.5-10.5^{\circ}$
$\alpha=69.22(1)^{\circ}$	$\mu=3.30 \mathrm{~mm}^{-1}$
$\beta=87.14(1)^{\circ}$	$T=298(2) \mathrm{K}$
$\gamma=66.12(1)^{\circ}$	Hexagonal prism, pale brown
$V=838.2(2) \AA^{\circ}$	$0.44 \times 0.30 \times 0.19 \mathrm{~mm}$

Data collection

Stoe Stadi-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1996)
$T_{\text {min }}=0.317, T_{\text {max }}=0.534$
3845 measured reflections
3845 independent reflections 3393 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.094$
$S=1.11$
3845 reflections
244 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-12 \rightarrow 13 \\
& l=0 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \quad \text { intensity decay: } 3.6 \%
\end{aligned}
$$

Table 1

Selected geometric parameters (\AA).

V1-Oh1	2.088 (2)	V5-Oc3	1.995 (2)
$\mathrm{V} 1-\mathrm{O} h 1^{\mathrm{i}}$	2.132 (2)	V5-Ob 9	1.819 (2)
$\mathrm{V} 1-\mathrm{Oc} 2$	1.924 (2)	V5-Ob10	1.829 (2)
V1-Oc3	1.920 (2)	V5-Ot14	1.619 (2)
V1-Ob4	1.682 (2)	$\mathrm{K} 1-\mathrm{Oc} 3{ }^{\text {ii }}$	2.923 (2)
V1-Ob5	1.707 (2)	$\mathrm{K} 1-\mathrm{O} 4$	2.807 (2)
$\mathrm{V} 2-\mathrm{O} h 1^{\text {i }}$	2.368 (2)	$\mathrm{K} 1-\mathrm{O} b 5^{\text {ii }}$	2.951 (2)
V2-Ob5	2.019 (2)	$\mathrm{K} 1-\mathrm{O} b 9^{\text {ii }}$	2.973 (2)
V2-Ob6	1.858 (2)	$\mathrm{K} 1-\mathrm{O} \mathbf{t} 14^{\text {iii }}$	2.870 (2)
V2-Ob7	1.881 (2)	$\mathrm{K} 1-\mathrm{O} w 1$	2.937 (3)
V2-Ob9	1.885 (2)	$\mathrm{K} 1-\mathrm{O} w 2$	3.047 (4)
V2-Ot11	1.597 (2)	$\mathrm{K} 1-\mathrm{O} w 3$	2.938 (4)
$\mathrm{V} 3-\mathrm{O} h 1^{\text {i }}$	2.228 (2)	$\mathrm{K} 2-\mathrm{O} b 6^{\text {iv }}$	3.086 (3)
$\mathrm{V} 3-\mathrm{Oc} 2$	1.997 (2)	$\mathrm{K} 2-\mathrm{O} b 7^{\text {iv }}$	3.172 (2)
$\mathrm{V} 3-\mathrm{Oc} 3^{\mathrm{i}}$	2.020 (2)	$\mathrm{K} 2-\mathrm{O} b 8^{\text {iv }}$	2.966 (3)
V3-Ob7	1.824 (2)	$\mathrm{K} 2-\mathrm{O} t 11^{\text {v }}$	3.420 (3)
V3-Ob8	1.821 (2)	$\mathrm{K} 2-\mathrm{O} t 12$	2.827 (2)
V3-Ot12	1.621 (2)	$\mathrm{K} 2-\mathrm{O} t 13^{\text {iii }}$	2.788 (3)
$\mathrm{V} 4-\mathrm{O} h 1^{\text {i }}$	2.291 (2)	$\mathrm{K} 2-\mathrm{O} w 2$	3.313 (4)
$\mathrm{V} 4-\mathrm{O} b 4^{\text {i }}$	2.072 (2)	$\mathrm{K} 2-\mathrm{O} w 5$	2.889 (4)
V4-Ob6	1.822 (2)	$\mathrm{Na}-\mathrm{O} w 1$	2.337 (3)
V4-Ob8	1.893 (2)	$\mathrm{Na}-\mathrm{O} w 2$	2.325 (3)
V4-Ob10	1.864 (2)	$\mathrm{Na}-\mathrm{O} w 3$	2.365 (3)
V4-Ot13	1.613 (2)	$\mathrm{Na}-\mathrm{O} w 4$	2.407 (3)
V5-Oh1 ${ }^{\text {i }}$	2.253 (2)	$\mathrm{Na}-\mathrm{O} w 4^{\text {vi }}$	2.444 (3)
$\mathrm{V} 5-\mathrm{O} c 2^{\text {i }}$	2.015 (2)	$\mathrm{Na}-\mathrm{O} w 5$	2.324 (3)

[^0]$1-x, 1-y, 2-z$; (v) $x, 1+y, z$; (vi) $-x, 1-y, 2-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} w 1-\mathrm{H} w 1 \mathrm{a} \cdots \mathrm{O} b 4^{\mathrm{i}}$	0.97	2.64	$3.100(3)$	109
$\mathrm{O} w 1-\mathrm{H} w 1 b \cdots \mathrm{O} b 5$	0.97	1.94	$2.811(3)$	148
$\mathrm{O} w 2-\mathrm{H} w 2 a \cdots \mathrm{O} c 2$	0.98	1.95	$2.856(3)$	152
$\mathrm{O} w 2-\mathrm{H} w 2 b \cdots \mathrm{O} b 10^{\mathrm{ii}}$	0.93	1.95	$2.839(4)$	160
$\mathrm{O} w 3-\mathrm{H} w 3 a \cdots \mathrm{O} b 9^{\mathrm{ii}}$	0.97	1.91	$2.767(3)$	146
$\mathrm{O} w 3-\mathrm{H} w 3 b \cdots \mathrm{O} t 14^{\mathrm{i}}$	0.97	2.50	$2.989(4)$	111
$\mathrm{O} w 4-\mathrm{H} w 4 b \cdots \mathrm{O} b 7$	0.97	1.83	$2.799(3)$	174
$\mathrm{O} w 4-\mathrm{H} w 4 a \cdots \mathrm{O} t 12^{\text {iii }}$	0.97	2.28	$2.980(3)$	128
$\mathrm{O} w 5-\mathrm{H} w 5 b \cdots \mathrm{O} b 6^{\text {ii }}$	0.97	1.84	$2.789(4)$	163
$\mathrm{O} w 5-\mathrm{H} w 5 a \cdots \mathrm{O} t 13^{\mathrm{iii}}$	0.97	2.37	$2.959(4)$	119
Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $x-1,1+y, z ;$ (iii) $1-x, 1-y, 2-z$.				

All H atoms of the waters of crystallization were placed in calculated positions or at electron-density peaks (H atoms of $\mathrm{O} w 2$), with $\mathrm{O}-\mathrm{H}$ distances ranging from 0.93 to $0.98 \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles ranging from 109 to 174°. They were included in the refinement in the riding-motion approximation, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The highest peak in the difference map is $0.80 \AA$ from K2 and the largest hole is $0.85 \AA$ from K2.

Data collection: Stadi4 (Stoe \& Cie, 1996); cell refinement: Stadi4; data reduction: X-RED (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.
Duraisamy, T., Ramanan, A. \& Vittal, J. J. (2000). Cryst. Eng. 3, 237-250.
Durif, A., Averbuch-Pouchot, M. T. \& Guitel, J. C. (1980). Acta Cryst. B36, 680-682.
Eglmeier, C., Range, K.-I., Kleynhans, A. \& Heyns, A. M. (1993). S. Afr. J. Chem. 46, 7-13.
Evans, H. T. Jr (1966). Inorg. Chem. 5, 967-977.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fratzky, D., Schneider, M., Rabe, S. \& Meisel, M. (2000). Acta Cryst. C56, 740741.

Lee, U., Jung, Y. H. \& Joo, H. C. (2003). Acta Cryst. E59, i72-i74.
Nowogrocki, G., Baudrin, E., Denis, S. \& Touboul, M. (1997). Eur. J. Solid State Inorg. Chem. 34, 1011-1026.
Rigotti, G., Rivero, B. E. \& Castellano, E. E. (1987). Acta Cryst. C43, 197-201.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97-2. University of Göttingen, Germany.
Stoe \& Cie (1996). Stadi4, X-RED and X-SHAPE. Stoe \& Cie GmbH, Hilpertstraße 10, D64295 Darmstadt, Germany.
Xu, J.-N., Yang, G.-Y, Sun, H.-R., Wang, T.-G. \& Xu, J.-Q. (1997). Huaxue Yanjiu Yu Yingyong, 9, 576-581.
Xu, J.-N., Yang, G.-Y, Sun, H.-R., Wang, T.-G., Xu, J.-Q. \& Wu, Q.-J. (1996). Jiegon Huaxue, 15, 253-256.
Zhang, Z., Shao, M., Zhang, L. \& Bai, C. (1985). Acta Scientiarum Naturalium Universitatis Pekinensis, 3, 65-67.

[^0]: Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x, 1-y, 1-z$; (iii) $x-1,1+y, z$; (iv)

